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ABSTRACT

We derive estimates of the effects produced by internal waves in
the ocean on coherent spatial and temporal processing of acoustic signals
based on the empirical Garrett-Munk GM/5 internal wave spectrum. We
present results for horizontal and surface limited rays, for point and

array receivers, and for stationary and moving sources,

i1id




‘,-" |

S

.? : »
1 B

. { 4

i E

J,*:

” |
&

&

II.

III.

Iv.

vI.

Introduction . . .

CONTENTS

Coherent Processing and the Phase Structure Function .

General Formulae f

Individual Small Separations and Their Contributions to D

: the Phase Structure Function

Horizontal Arrays and Stationary Point Sources .

Moving Sources .
References .

Figure Captions

- J S O

14
15
18
19

i
|



TR o R A

I. INTRODUCTION

This report addresses itself to the question of what limits sound speed
fluctuations in the ocean place on the dimensions and integration times of
acoustic arrays. We shall for the present defer any discussion of advanced
processing techniques, and confine ourselves to the simple case of an array
that measures incident intensity from various angles by adding linearly varying
phase shifts to the hydrophones in the array, and by integrating the received
signal over some period of time. We investigate at what array dimensions and
at what integration time coherent processing is destroyed by sound speed
fluctuations induced by the ocean medium. The results obtained for this
sivuation will serve as a convenient baseline against which to measure the
improvements that may be obtainable through the use of more sophisticated

processing techniques.

IT1. COHERENT PROCESSING AND THE PHASE STRUCTURE FUNCTION

Let us assume that we have a receiver consisting of a vertical rectangular
array of hydrophones of horizontal and vertical lengths y and z with a density
of n hydrophores per unit area. Let us further assume that there is a source
located at a horizontal bearing angle ea (relative to the array normal) emitting

an acoustic frequency o Then in the absence of perturbations induced by the

0
ocean, the receiver would pick up a signal

Y 2 T iqy(sinb,.-sinf) -i(o,.-o0)t
W [ @y [l [ ate 0 e O (2.1)
o=1 0 0 0

I~

if it integrates for a time T at a frequency o and is looking in the horizontal
directicn 6. Here o indexes the different acoustic rays along which the signal

(a)

can travel from source to receiver and Y is the complex signal associated
with ray a. The acoustic wave number q is defined by q = c/c0 where ¢ is the

sound speed at the receiver.
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In general, the ocean medium through which the signal travels will disturb

the received signal so that the signal associated with each ray path o will
(o)

vary from one hydrophone to another, and will vary with time. Thus ¥ becomes

replaced by w(a)(;,t), and hence, when averaged over an ensemble of oceans, the

received intensity from direction 6 at frequency o will be

T T
(1(8,0)) = n’ ) [ay [ dy'[ dz [ dz'[ at [ar'
aa' 0 0 0 0 0 0

iq(sin® .~-sinb) (y-y') -i(o.-0) (t-t') % .

e & e 0 W &% GLen)
(2.2)

The fluctuations induced by the ocean along two different rays are inde-

pendent. Hence (w(a)*w(a')> = (w(a)>*<w(a')> for a # o'. These averages are

2 2
1/2 o(® L/2 (@)

proport " ‘nal to e (see Ref. 1). When the fluctuations

2 2

(o) and ¢(a')

are la:ze ¢ are large and terms with a # o' contribute little

to the received intensity.

1)

For terms with o = a' we have

P& Y@ aeny = 1@ % Do, et

(o)

where D is the phase structure function and I is the intensity average of
ray a. To a good approximation D is independent of ray and we shall assume this
henceforth. Thus 9 (o) Y Y Z Z T T
(T@,0)) =n" ] 17 [dy [dy' [dz [de’ [dt [ .,

o 0 0 0 0 0 0

1q(sin6-s1n8) (y-y') -i(g-0) (:-t') -4 D(x-x', t-t') ,
e
¢ 5 (2.3)

and our problem is reduced to the study of the behavior of D.
Before proceeding to do this, however, let us anticipate what we will

learn about D to give an estimate of when coherent processing fails.

]
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First, we note that as either the spatial or temporal separations go to
infinity, D - 2¢2 where @2 is the parameter defined in Ref. 1, and which
coincides with the mean square phase fluctuation along a ray when the fluctuation
is small. Thus @2 sets the basic scale of D.

If ¢2 is sufficiently small, then D is everywhere small and there is no
limit on coherent processing. To make a numerical estimate of when this occurs,

1)

we note”’ that for an axis ray

QZ - Vv )2 R
50 Hz 300 km i

where R is the propagation range and v is the acoustic frequency. The region

in R and v where @2 < 1, where coherent processing is always valid, is shown
in Fig. 1.

When R and v are such that ¢2 > 1, limits on coherent processing become
meaningful. In this case only small spatial or temporal receiver separations
are relevant and (as will be shown later) D is essentially quadratie in the
veparations. Hence, taking for simplicity the casc of a point receiver inte-

grating over time, we may set

D(0,t-t') = 92 (5551)2 (2.4)

where T is some characteristic time. With this form for D, we may now evaluate

the integral in (2.3) (for o= 8 o = 00) and we find

O’
B - 3 D(0,t-t'")
(I(T)) = [ dtf de' e
0 o0
= IJ%ZZE T large
T2 T small (2.5)

A schematic plot of the integral as a function of T is shown in Fig. 2. The
dotted line represents the true behavior, interpolating smoothly between the two
asymptotic expressions given in eq.(2.5). A reasonable definition of where

3
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coherent processing fails is where the two asymptotic forms meet; this occurs

at T = ©/21/%. At this value of T, D(0,T) = 27. Thus we shall use D = 27

as our criterion for the failure of coherent processing.

III. GENERAL FORMULAE FOR THE PHASE STRUCTURE FUNCTION

The calculation of the phase structure function D can be carried out as follows.
The most geunral situation is one in which we are comparing two rays joining two
distinct sources to two distinct receivers, (Fig. 3). We shall label the rays
1l and 2; ray 1 joins a source at ;Sl to a receiver at ;Rl and ray 2 connects a
source at ;éz to a receiver at ;kZ' Let Xy and X, be horizontal distance along
rays 1 and 2 respectively; then (xl,yl(xl), zl(xl)) and (x2,y2(x2), ZZ(XZ)) denote
points on the two rays. We therefore have (XSI’yl(x51)’ zl(x51)) = (xSl,ysl,zsl)
and (le,yl(le), zl(le)) = (le,le,le), with analogous expressions for ray 2.

The phase structure function for these two rays is defined by

D(1,2) = (@ [ Lds-q | 8 a)?y . (3.1)
ray 1 ray 2

In Ref. 1 it is shown that when the two rays are not far apart, and when the

sound-speed fluctuations are dominated by internal waves, (3.1) may be replaced by

R & @ ® '
D(1,2) =2 [ dx [ dk [ dw F(k,i, z(x))
0 0o o y

[1 - cosAt cos(kyAy(x) + szz(x))] . (3.2)

where Ay(x) and Az(x) are the horizontal and vertical separations of the two

rays at a horizontal distance x along the rays, and At = tl—t2

separation of the rays, and F(k,w; z(x)) 's the internal-wave spectrum. The

is the time
spatial separations of source and receiver come in through the boundary conditions

on Ay(x) and Az (x):

4
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]
' = = + - 3
i. Az (0) 2g1 ~ Zgy tanG(O)(xSl xSZ) ZS + tanG(O)XS s
y k! = - = =
; ‘ * Az (R) Zp1 T ZRo + tan6 (R) (le sz) = ZR + tanG(R)XR ;
i Since the deterministic sound speed c(z) varies only vertically, we have an
)
i explicit expression for Ay(x), namely:
!, ‘ by(x) =Yg + (Yp - Yo) x/R . (3.3)
] The quantity Az(x) is defined as the solution of the differential equation
E a? 1 42
: ——E-Az(x) + e c(z(x)) Az(x) =0 (3.4)
: dx ¢ ~dz
3
: subject to the boundary conditions given above.
i As an illustration, suppose the sound channel is parabolic: c(z) =
1 = =
; c+ 1/2 Kz(z-z)z, where z is the sound channel depth. Then the differential
3
; equation for Az(x) has the solution
| (Z,+tan8(R)X,)sinKx + (Z_+tan8(0)X,)sinK(R-x)
R R S S
Az(x) = "
sin KR (3.5)

More generally, the solution to the differential equation for Az(x) can

be written

X '
Az{xX) = atanb(x) + Btané (x) f di
0 (tand(x))

2 ’
where the constants o and B are to be determined from the boundary conditions ]
given earlier. For very long ranges, when there are many loops in the ray, the

integral over dx' becomes nearly proportional to x. Thus, we have, approximately,

Z. + tand(0)X Z_ + tan8(R)
Az(x) = tan6(x) [( S S) (R;x\_*_ ( R XR\ (%)] ]
tané (0) ) tand(R) } B

(3.6)
5
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The quantities ky and kZ in (3.2) are given by the internal-wave dispersion

relations:
ko= kR , (3.8)
V™ - wy
2 2 2.2
where wy = w; + n"8”. Here n(z) is the buoyancy frequency and wy is the

inertial frequency. The Garrett-Munk 75 model of the internal-wave spectrum is

Flk,w; z(x)) _ 8 <U2) 1

ky 0 ( ° 1 _)
2.2
=1 J ¥
2 n w —w2
q wi i
B ng w3
1
2 ﬂj* 2 w —-w
k +<—‘B——'\ -
) )
2 2
T - _wi
e(n—w)e(w—mL)G(k -3 ™ ) 5 (3.9)

This spectrum is normalized by the requirement that the parameter ¢

is

R © © P
&= [ ax | di'[ de T3S0 (3.10)

PRSP
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Here (ué} is the mean square sound speed fluctuation at the surface
(actually at the bottom of the mixed layer), j, is a mode number cutoff, q is
the (sound axis value of the) acoustic wave number, ny is the buoyancy frequency

on the sound axis, n,. is the buoyance frequency at the surface, w, is the

0 i

inertial frequency and B is the vertical scale depth. Canonical numerical values

of these are:

- -4 &
(uo)rms = 4.9 x 10 n1/2n 1.1 cph
no/Zﬂ = 3 cph
Ve = 8
wi/2n = 1/24 cph
B = 1 km

The 6 functions in (3.9) limit the ranges of integration in (3.10), and
in particular exclude singularities at w = 0 and k = 0.
Expressions similar to (3.10) obtain if we use, for example, w and mode

number j as independent variables:

R >4} o

DA,2) =2 [ dx ] [a Eadiz(®)
0 =10 kg
[1 - coswAt cos (ky by (x) + k, Aé(x))] . (3.11)

where now we replace ky and kz by

2
e T T Lo X

Again the normalization is such that

K , (3.12)
y

? dw Flw,j;z(x))
0

~J

2 il .
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and, for the GM75 spectrum, we have

g 1 2, .2
kY n? ) ) b B
j=13 i,
q B wi n3 wz—wf
73 75 G(n—w)e(w—wL) . (3.13)
I'IO W -(A)L

IV. INDIVIDUAL SMALL SEPARATIONS AND THEIR CONTRIBUTIONS TO D

We are primarily interested in cases where the parameter ¢2 is large,
corresponding to the saturated or partially saturated regimes, for only here
will there be limitations on coherence. For this case we only need evaluate
the phase structure function for small spatial and temporal separations, since
the contribution of large separations in eq.(2.3) is heavily damped by the large
value of ¢2. When the separations are small, their effect in D is additive, so

we may discuss each of them separately. We shall find that the general formulae

for D, given in the previous section, become relatively simple when the separations

are small, and we will end up with a rather simple analytic expression for D
characterized primarily by coherence lengths for temporal and vertical and hori-

zontal spatial separations. Let us outline how this comes about.,

A, Temporal Separations

The general expression for D reduces to

K I I F(k,w;z(x))
D(T) = 2 [ dx [ dk [dw = (L - cosuT) (4.1)
0 0 0 y

For small T we replace 1 - coswT by 1/2 szz so that

D(T) = $272 . (4.2)

8
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where 52 is defined in Ref. 1. Finally, we write this as

i 2
o -t 31

2 (4.3)
with ine coherence time T defined simply by
¢
T > T . (4-4)
¢
1)
For an axis ray, this time is
2 el . -2 2
™ = Zwi log nl/wi = 0.45 (hours) T = 1.6 hours .
B. Vertical Spatial Separations
Here it is most convenient to use the w-j language:
T b T o Elupds2(x))
D(2) =2 [ax ] [ aw H0di2() (4 o0y a0y (4.5)
4 z
0 j=10 y
(Z, the length of a vertical receiver, comes into this formula through the
boundary conditions on b8z(x)). Here
k= A7 n(z(x)) (4.6)
z B n ) '

0
The value of using w and J as variables is that kz < pends only on j, and ‘in
fact is simply linear in j. Because of this fact, and because F(w,js;z(x)) is

proportional to l/_'](_']2 + jf), the sum on j can be approximately evaluated

analytically, we replace Z by fdj, and define

k|
I(a,j,) = f dj %- 7 5 COs aj/ f dj %- 21 7 " 12 B o 2cCi (ajo)
Py ki 3 I 1 e I
og
;

*+ [cosh aj, (Ci (a(jy+id,)) + i (a(35-13,)))]

*+ ilsinh aj, (i (a(3+1,)) - st (@3~ N1}, (4.7)

where C1 and Si are the cosine and sine integral functions. We can set jo =
<]

here, to correspond to X'
J=i

S i TRl g N I il RELLL -l s kB ra s
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In terms of tuc function I, the phase structure function can now be written

R
D(z) = 2 [ dx [jz J ao Healiz@®), (1 . 1(% 1) )y ), j*))

Il
0 y 0 (4.8)

A simplified frim+la, valid for small separations, is obtained by expanding

the function I for small Az:

R .. 2
D) =2 [ dx [J [ du F—(“’-%MJ% (—3—5) [lof A2 % v, . (4.9
0 j v

L
] y v
where 2V is an x-dependent length defined by
s Vol %
ogllx
2 = = ‘ .
AT d5 n(z(x)) ’ (4.10)
L 4 and where LY is a constant given by
3 . X
Yy =% -C - log A 5 (4.11)
v 2 f 2 —
1og(j*+1)
¢ where C - 0.577... is Euler's constant. ;
The expression (4.9) for D can be evaluated analytically for a near axis
ray. For these rays the sound channel is nearly parabolic, and the rays are
» therefore nearly sinusoidal. Thus (cf eq.(3.5) with BR = es = ZS = 0 and ZR = Z7)
= 7 8in Kx
Az(x) = Z =in KR . (4.12)
» Using this formula in (4.9), and noting that F(k,w;z(x)) is not a function of
x for the axis ray, we find
D(2) = 20° {3 (log 2+ 1)} (4.13)
x v
» v v
where the coherernice leungth x; for this ray is
SR
v v
4 (Ev here is lv evaluated on the sound axis) #nd the constant Pv is
o0 1
Fv =3 + Tz =5 log 2
k) 10
»

.
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Numerically, we find

{v

300 meters,

and

r =, 1’49.
v

Eq.(4.9) for D can also be evaluated analytically for a steep ray, because

for such rays the major contribution to the integral comes from the region near

the ray apex.

For a single apex, we can replace the quantity

2

i/Az Az

-2-(2 ) (log o= + Yv) :
v v

in the integrand by its value at the apex. The remaining integral then gives

just the parameter 2¢2 evaluated in the apex approximation. Thus

.2 .
D(1,2) = &° (—A—z—) Qog 22 +v) . (4.14)
2'V ’LV v

where the hat on Az and Qv indicate that they are to be evaluated at the ray
apex (x,z). (Note that Yy is independent of (x,z), so we do not have to indicate
any special point at which it is to be evaluated.)

For very long ranges, where a steep ray has many apexes, we can use (3.7)

to calculate Az. For example, for a point source and a vertical receiver of

height Z,

D

(R) R

Az(x) =

[=2]

where we have replaced tan® by 6 since all angles are small, and where ZR is Z.

With this approximation we cannot simply evaluate Az at the apex, because

vanishes there. Rather we must average Az2 o 62 over the ray apex. This yields

the expression

-2
A 0 Z Z
D(Z) = ¢ 3 5 ( ) (log ﬁv + Yv) i (4.15)

11
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where the average of 62 over an apex is

-2 ;; wy n, B ~
8 -‘/;3- = \ (4.16)

oN

u 0 nz(é)r

where r is the radius of curvature of the ray at the apex. An obvious modi-
fication of (4.15) gives the expression for D for arbitrary source and receiver

separations as in eq.(3.7).

We may put eq.(4.14) into a form parallel to eq.(4.12) by choosing

£ =71 l/ﬁ_(ﬁl , (4.17)
v vy =2
v
as the coherence length for a steep ray, and
I =y +1 s | (4.18)
=T og ﬁv g 2

Numerically, for the surface limited ray, j& = 420m and T = 3.

C. Horizontal Spatial Separations

Now we have

R . o
by =2 [dn [ [ e HRB2O) g sk aye) L (4.19)
0 j§=1 0 y y

where

Ay(x) = Y x/R

for a horizontal receiver of length Y. Furthermore,

T
y Vm —wy

R

Unfortunately, in contrast to case B, ky is now not a function of j alone. An
analytic evaluation of (4.19) can therefore not be carried very far. It is

still possible to carry out the sum on j, obtaining an analog of (4.8); however,
the w integration is now prohibitively difficult. As a result, simple expressions

analogous to (4.9) and (4.13) are not now obtainable.

12
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Nevertheless, as we shall see in the following section, a fairly good

(30%) analytic representation of D(Y) is

21 Y,2
D) = 20" 5 {7}
H
where the horizontal coherence length XH is 6.4 km,
SUMMARY
Combining these separations we have the following simple approximate

expression for D, valid for small separations.

21 7,2 ,1 Y.2 1,2,2 Z
D=20" [ D+ I +35 () Qog5+T)} . (4.20)
2 't 2 XH 2 xv (; v
with T = 1.6 hours
and for near axis rays
£ =300 m,
v
:{’H = 6.4 Km.
and r = 1.49 R
v

while for the surface limited ray,
Xy

r

420 m

3.

v
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7 | V.  HORIZONTAL ARRAYS AND STATIONARY POINT SOURCES

As an application of the results obtained so far, let us consider the case
[ 4 of a stationary point source and a horizontal linear receiver. Thus the source
separations are all zero and XR’ ZR are zero as well. Then Az(x) = 0 and

Ay(x) = Yx/R where we write Y for YR' From eq. (3.2) we have

1 R © 0 .
D(Y,T) =2 [dx [ dk | dwﬂh'%z—(x—)l
0 0 0 y
2L 2
L Yx
[1 - coswT cos (k 5 3 R )] . (5.1)
W =0y

where T = tl-tz. To illustrate what this implies we shall specialize to the

axis ray z(x) = 0. For this ray Wy = W, the integral on dx can be carried

out, and we find

D(Y,T) = 2R [ dk [ dw EKa83 Q) 7 | ooy Sin kY (5.2)
At k, 1Y

The expression for D(Y,T) can be easily evaluated numerically. Fig. 4
shows the ratio D(Y,T)/2<I>2 for various values of T as a function of Y. Fig.5
shows the same ratio as a function of T for various values of Y.

Figures 4 and 5 also show lines representing fits to the exact expression s

of the form

DY, T) _ 1 T2, 1 ,Y.2
Wl 2 &t g = 33

The value T = 1.6 hours (which we've seen in Section IV is the value of Q/é) is

imposed on the fit. The value of d% is selected to optimize the fit and turns

out to be 6.4 km.

14
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We may obtain ap analytic result for maximum values of T and Y consistent

with coherent Processing by using eq. (5.3);

3 T Y 2
E D%+ 7 - &z : (5.4)
l 3 H )
k. :
E' For zero integration time this yields a maximum array length of
. /m
E“ MAL = o ;(H s (5.5)
F which for a near-axis ray gives
.
1 MAL = 210 3, /1@—%@ : (5.6)
:
: Similarly a maximum integration time can be obtained ag
{ MIT ‘%—"T - ML : (5.7)
3 where

. X”H

, v = S 4 km/hr (5.8)
i

1

For intermediate combinations of array length and integration time limits

r may be obtained from Figures 4 and 5.
%, For example, an acoustic frequency of 100 Hg (1.e., an acoustic wavelength
il
F of 15 m) at a range of 1000 km yields @2 = 26.2. The line D/2¢2==2n/(56.4) =
d
g -112 intersects the T = 0.1 hours curve in Fig. 4 at Y = 3.5 km. Thus for an
o
j integration time of 0.1 hours the maximum useful array length 1s 3,5 km,
:
E VI. MOVING SOURCES
E | As a final example of the use of the resul 1ed above, let us discuss
4
o o
IE the effects of moving sources. For a point source moving with velocity
3
4
i. V = (Vx,Vy,Vz), we replace the source dimensions (XS,YS,ZS) by (V.T,v T,v )
? We shall confine ourselves to the case of Sources moving in the horizontal plane,
? & and set Vz = 0. We may then distinguish two possibilities,
;
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A. V. =0: Source moves tr

ansverse to the line joining source to receiver,

In this case we may, as in Section IV, limit ourselves to discussing the

axis ray. We then have Az(x) = 0, and Ay (x) = VyT + (Y—VyT)x/R where, as in
Section IV, Y is the horizontal dimension of the receiver. Thus. eq. (3.2)

becomes replaced by

o e
D(Y,T) =~ 2R [ dk [ du &L;’(‘-L—Ol 7 = cosz(

sin kY - sin kVyT )]
0 0 y .

kY - kv T
y

(6.1)
For a point receiver (Y = 0) we therefore find exactly the same results as

those given in Section V, but with Y replaced by V&T so that the maximum

integration time in this case is (using our analytic approximation)

MIT =»%7r “—‘—;__.:— . (6.2)
(3
1+
v

internal-wave velocity, v, to reduce the coherent integration time. The value

: Source moves directly toward or away from receiver.
y—2t y y

We again specialize to a point receiver. Then Ay(x) = 0 and in calculating

Az(x) the boundary conditions are 6z (0) = tane(O)VxT, Az(R) = 0. For short
integration times T we can add the direct effect of T and the induced Az due
to the source motion. The effect of Az is given by eq. (4.8).

Insofar as the analytic formula (4.17) is valid one can estimate the maximum
integration time T for a8 point receiver in the same way as in case A, with Z

in (4.17) replaced by VxTe(O); T satisfies the equation

v_Te(0) V_T6(0)
(log +T)] . (6.3)
Ly Ly v

21 = o2 [({-)2 +
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To estimate the value of Vx at which radial source motion begins to cut into
coherent integration time, we may ignore the log term. The relevant velocity

is then evidently

o

1 &y
/f; 8(0)t

et

v .75 km/hr

for the surface limited ray. Th;s velocity is considerably smaller than the
analogous tangential velocity, due to the fact that the shorter vertical coherence
length (420'm as compared to 6.4 km) more than compensates for the increase of the
critical velocity by the factor 1/6(0)~ 5. Thus for steep rays radial source
motion is a much more serious inhibition to coherent integration than is

tangential motion.

In conclusion we should emphasize that the limitations produced by source
motion discussed here are only those associated with internal wave induced
fluctuations in the ocean. There are also effects Produced simply by source
motion in the presence of many deterministic multipaths. These have recently
been analyzed by H. Coxz). (These deterministic multipath effects are of course

not relevant for a stationary source.)
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Figure Captions

The parameter ¢ as a function of propagation range and acoustic

frequency.

Schematic plot of received intensity at a point receiver as a function
of integration time, showing the transition between the region where
coherent processing applies (I(T) « T2) and where it fails (I(T) « T).
The time TV27/9¢ is the intersection of the small T and large T asymptotic

forms for I(T). We say coherent processing is valid below this time.

Sketch illustrating ray 1, ray 2, the mean ray, and the source and
recelver separations projected in the vertical plane. A similar sketch

(with straight line rays) applies projected ia the horizontal plane.

Graphs of D(Y,T)/2¢2 computed numerically, for various integration
times T as a function of horizontal receiver length Y, for a flat ray
and a stationary point source. The dotted lines show an approximate
fit of the form D/2<I>2 =—;— (T/'r)2 i--;- (Y/JH)2 witzhxH = 6.4 km and

T = 1.6 hrs.

Same as Fig. 4 but plotted as a function of T for various values of Y.
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